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The main purpose of this paper is to investigate the e!ects of periodic spring
supports on the acoustic response of an in"nite, #uid-loaded beam subject to
a harmonic moving line force. The mechanics of a #uid-loaded beam with periodic
spring supports was formulated based on the Timoshenko beam theory. The main
focus is to examine the e!ects of the spring support spacing and the travelling line
force speed on the radiated sound power. The e!ects of the spring supports on the
radiated sound power decrease as the excitation frequency and the Mach number
of the travelling line force increase. When the external line force is stationary and
acoustically small, it is interesting to "nd that the radiated sound power is seen to
exhibit peaks at certain low wavenumber ratios except when the length of the
external force is an integral multiple of the spring support spacing. It is shown that
the locations of these peaks coincide with the lower bounding wavenumber ratios
of the odd number of propagation zones. Under the circumstances, the incomplete
pressure equalization is responsible for the #uctuations in radiated sound power.
However, when the line force is moving, the radiated sound power #uctuates more
rapidly at low wavenumber ratios even through the length of the external line force
is an integral multiple of the support spacing. ( 1999 Academic Press
1. INTRODUCTION

The vibroacoustic response of periodic structures, such as beam on equally spaced
supports or plates with equally spaced rib sti!eners has received much attention in
the past years [1}11]. The propagation constant [1] is used to de"ne the so-called
propagation zones and attenuation zones by examining the phase and amplitude
variations between two adjacent sections. If the external forces have frequency and
wavenumber components that coincide with those of the free propagating waves,
the contributions from those components to the response will be greatest [3]. For
di!erent types of supports, Mead [5] has shown that the beam on #exible supports
has two propagation constants for each frequency instead of one on "xed supports.
He also demonstrated that the subsonic convected pressure "eld could generate
supersonic #exural waves that radiate sound. For a plate with periodic rib
sti!eners, Mead [10] further indicated that the acoustic radiation is fundamentally
022-460X/99/360083#17 $30.00 ( 1999 Academic Press
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determined by the periodic geometry. Cray [11] has studied the near"eld and
far"eld sound radiation from a line-driven #uid-loaded in"nite #at plate having
periodic and non-periodic attached rib sti!eners, and shown that excitation
frequencies below coincidence can generate large magnitude of supersonic
wavenumber components, which imply better sound radiation. He has also shown
that the radiated sound pressure depends not only on the rib sizes but also on the
rib spacing. It is the rib spacing that determines whether the sti!ened plate radiates
sound strongly or weakly.

Although the vibroacoustic responses of periodic structures have received much
attention for many years, excitation to the structures in most research has however
been restricted to the stationary, harmonic forces and convected pressure. This
paper examines the e!ects of periodic spring supports on the radiated sound power
of an in"nite, #uid-loaded beam subject to a harmonic line force moving at
subsonic speed. This paper extends the research performed by Keltie [12], who
solved the same speci"c model but for a beam without periodic supports. The
sound power is formulated "rst as a function of the support spacing and
Mach number. Then the relation between the radiates sound power and support
spacing and the relation between the radiated sound power and Mach number is
discussed.

2. FORMULATION

Consider an in"nite, homogeneous, elastic beam lying on the plane (y"0)
with periodically, equally spaced spring supports attached to the beam as shown
in Figure 1. An acoustic medium is "lled above the beam (y'0), and there
is a vacuum under the beam (y(0). This beam is excited by a uniform
harmonic loading over the length 2¸, frequency u, moving with subsonic speed,
<. The vibration equation for a Timoshenko beam is given by Junger and
Feit [13]:
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In Equation (1), u(x, t) represents the displacement of the beam, I the cross-
sectional second moment of area per unit width, o

v
the density of the beam, i2

the cross-sectional shape factor, f (x, t) the external moving line force, p(x, y"0, t)
the acoustic pressure acting on the beam surface and p
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(x, t) the force from

the spring supports. EM and GM are the complex elastic and shear modulus,
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Figure 1. Schematic representation of problem geometry
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where g is the structural damping and l is the Poisson ratio. The moving line force
f (x, t) is given by

f (x, t)"
F
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where H(x) is Heavyside step function and F
0

is the external force strength per unit
width. The force p
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where k
s
and l are the sti!ness of the spring support per unit width and the spacing

between two adjacent supports, respectively. The pressure p(x, y"0, t) acting on
the beam surface satis"es the Helmholtz equation which is given by
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where C
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is the speed of the sound in the acoustic medium. The boundary condition

at y"0 is given by
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where o
0

is the density of the acoustic medium. After applying the spatial Fourier
transformation to the external moving line force, equation (2) becomes

FI (m, t)"F(m)e+(mV`u)t , (6)
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For a steady-state response, equation (6) implies that the transformed displacement
;I (m, t), sound pressure PI (m, y, t) and periodic spring force PI

1
(m, t) will have the
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common factor, e +(mV`u)t in a wavenumber domain:
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By applying the spatial Fourier transformation to equation (3),
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Introduce a new transformation in terms of the variable f de"ned as
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Substituting equation (9) into equation (8) yields the spring force:

PI
1
(m, t)"

k
s

2n P
=

~=

uJ (f, t)
=
+

n/~=

e+nl(m~f)df . (10a)

Applying the Poisson summation formula [14] to equation (10a), the latter is
rewritten as
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For the special case when <t"nl, the spring force can be expressed by
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After applying spatial Fourier transformation to equations (1) and (4), and substitu-
ting equation (7) into transformed equations (1) and (4), the transformed equation
(1) is rewritten as
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with k
0
("w/c

0
) is the acoustic wavenumber and M ("</C

0
) is the Mach number.

Equation (12) is expressed in a similar form given by Keltie [12] except for the last
term that results from the equally spaced spring supports. Rewrite equation (12)
using notations as
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In order to "nd the explicit solution of the displacement response in equation (13),
three notations are de"ned as follows:
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If the range of summation index n in equations (14a}c) is from negative in"nite to
positive in"nite, each of the equations has the key property [11]
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Using the relations shown in equations (14a}c), equation (13) is rewritten as
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Upon substituting equation (14d) into equation (16), equation (16) can be simpli"ed
as
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Substituting Equation (17) into Equation (15) yields the explicit solution of the
displacement response

;(m)"R(m)!K(m)
R

0
(m)

1#K
0
(m)

. (18)

From equation (18), the displacement response is made of two parts. The "rst
term represents the displacement contribution from the beam without periodic
spring supports. The second term results from the addition of periodically elastic
supports. By integrating the surface acoustic intensity over the entire beam, the
radiated sound power per unit width, II, is given by [12]
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Substituting equation (20) into equation (19), the dimensionless radiated sound
power per unit width is expressed as
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3. ANALYSIS PARAMETERS

Numerical examples will now be presented to illustrate some features of the
theoretical results. Properties of the speci"c beam model analyzed are as follows:
E"20]1010Nt/m2, o

v
"7800 kg/m3, h"2.54]10~2 m, l"0.3, i2"0.85 and

g"0.01. The beam is assumed to be submerged in water (C
0
"1481 m/s,

o
0
"1000 kg/m) or in air (C

0
"343 m/s, o

0
"1.27 kg/m). The spatial extent of the
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moving line force is assumed to be acoustically small and "xed at the value
k
0
¸"0.1 and the sti!ness ratio S is assumed to be 1. In order to demonstrate the

e!ects of the speed of the travelling force on radiated sound power, three di!erent
Mach numbers, M"0, 0.25 and 0.5, were chosen.

4. NUMERICAL RESULTS AND DISCUSSION

For a stationary, external line force with the acoustic length k
0
¸"0.1, the

non-dimensional radiated sound power is plotted in Figure 2 for an unsupported
beam and beams with two di!erent spring support spacings, 2¸/l"2/n and 1,
respectively. From equations (21b, c) and Figure 2, it is easily shown that the
in#uence of spring supports on the radiated sound power decreases while the
wavenumber ratio c increases. Note that the non-dimensional frequency X is
de"ned as

X"A
u2o

v
Al4

EI B
1@2

.

The relation between wavenumber ratio c and non-dimensional frequency X is
given by

c"
2k

0
¸

(2¸/l)JX
.

Figure 2. Relative sound power level versus wavenumber ratio for a range of 2¸/l value, K
0
¸"0.1,

M"0, in water. ** 2¸/l"2/n; ............. 2¸/l"1; } } } } } } unsupported.
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For the beam with spring support spacing 2¸/l"2/n, it is interesting to
"nd that the radiated sound power shows pronounced peaks at certain
wavenumber ratios. Nonetheless, all these peaks occur at low wavenumber ratios
(i.e. c(0.1). Note that there is no peak in the radiated sound power for either an
unsupported beam or a beam with spring support spacing 2¸/l"1. These peaks
are related to the nature of the wave propagation and attenuation in a periodically
supported structure. Explanations for the reported phenomenon will be discussed
later.

The non-dimensional radiated sound power is plotted in Figure 3 for
another three di!erent spring support spacings, 2¸/l"2, 4 and 24. From the
general trend indicated by these results, it is clear that there is no #uctuation in
radiated sound power at the wavenumber ratio of less than 0.1 whenever 2¸/l is an
integer.

Figure 3 is typical of the results where the addition of spring supports increases
the total structural impedance that results in less vibroacoustic response. This is
true especially at low wavenumber ratios. Comparing Figure 2 with Figure 3, the
peak near the wavenumber ratio k

0
/k

B
"1 emerges when the ratio 2¸/l

increases from 2¸/l"2 to 24. With this ratio 2¸/l increases the system behaves
more like an in"nite beam with elastic foundation, and the emerging peak near
k
0
/k

B
"1 shifts towards the higher wavenumber ratio. A discussion of this

phenomenon will follow.
Figure 3. Relative sound power level versus wavenumber ratio for a range of 2¸/l values,
K

0
¸"0.1, M"0, in water. ** 2¸/l"2; ............. 2¸/l"1; } } } } } } 2¸/l"24.



Figure 4. Relative sound power level versus wavenumber ratio 2¸/l"2/n, K
0
¸"0.1, M"0.22

In water; ................ in air.
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In order to demonstrate the #uid loading e!ects on the acoustic radiation,
Figure 4 shows the non-dimensional-radiated sound power for a water-loaded
and an air-loaded, periodically spring-supported beam excited by a stationary,
harmonic line force with k

0
¸"0.1 and 2¸/l"2/n, respectively. When compared

with Figure 2, both cases show sound power #uctuations at low wavenumber
ratios. Another immediately noticeable feature is the pronounced peak at
wavenumber ratio c"2.3 for the air-loaded, periodic spring-supported beam. Note
that there is no pronounced peak for the case of water-loaded beam near
wavenumber ratio c"1. This would be expected as the dense medium has a very
large damping action on the beam at this wavenumber ratio. It greatly attenuates
the peak response.

In an attempt to clearly explain why there is no #uctuation in radiated sound
power at low wavenumber ratios whenever the length of external distributed line
force is an integral multiple of the support spacing, some simpli"cations for
equations (21a}c) are derived. For the case of the length of external distributed line
force being equal to an integral multiple of the support spacing, equation (21a) is
rewritten as
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For a great value of m and an acoustically small line force (k
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Equation (22) can then be rewritten as
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Furthermore, equation (23) can be simpli"ed as
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From equation (24), it shows that the radiated power is governed in the same form
as that of a #uid-loaded beam with additional sti!ness D

s
. Hence, like a #uid-loaded

beam without periodic supports, there will be no #uctuation of the radiated sound
power at low wavenumber ratios. Under the circumstance, the impedance due to
the #uid loading is much less than that of the structure, so a radiation peak emerges
near c"1.0 as observed in Figure 3. It is also seen that this peak occurs at the
wavenumber ratio c"2.3 instead of c"1 due to the additional sti!ness and mass
e!ect introduced by the periodic spring supports and #uid, respectively.

In order to seek a greater understanding of the e!ects of the spring support on
the radiated sound power, the upper and lower bounding non-dimensional fre-
quencies X of the "rst "ve propagation zones of a periodically simply supported
beam are calculated and listed in Table 1. It should be noted that the upper and



TABLE 1

Bounding frequencies for the xrst xve propagating zones of a periodically supported
beam

Non-dimensional Wavenumber
Propagation zone no. frequency X ratio c

1 9)87 0)1
22)4 0)066

2 39)5 0)05
61)8 0)04

3 89 0)033
121 0)0286

4 158 0)025
199 0)022

5 247 0)02
298 0)018
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lower bounding frequencies for each propagation zone are obtained while the
periodically simply supported beam is in a vacuum. The corresponding wave-
number ratios for the bounding frequencies of each propagation zone are also
listed in Table 1. Notice that the wavenumber ratio c is inversely proportional to
the square root of non-dimensional frequency X . In Figure 4, the relative sound
power is plotted versus the wavenumber ratio instead of the non-dimensional
frequency.

As discussed previously, the total radiated acoustic power #uctuates at low
wavenumber ratios, while the length of external distributed line force is acoustically
small and is not an integral multiple of the support spacing. For the case of the
air-loaded beam shown in dotted line in Figure 4, the wavenumber ratios at which
peaks are located nearly coincide with the lower bounding wavenumber ratios of
the odd number of propagation zones as listed in Table 1. The wavenumber ratio of
the largest peak is c"0.066 which corresponds to the upper bounding frequency of
the "rst propagation zone, i.e. X"22.4. The non-dimensional frequency X"22.4
corresponding to the wavenumber ratio c"0.066 is identical to the fundamental
natural frequency of a single-bay beam element with its ends fully clamped. At this
frequency, each single-bay element of the periodically spring-supported system
moves in phase. There is neither wave propagation nor wave attenuation from bay
to bay. Although the surface motion of the beam vibrates slowly below coincidence,
large acoustic power will be generated due to incomplete hydrodynamic cancella-
tion [13]. The second peak occurs at c"0.029 corresponding to the upper
bounding frequency of the third propagation zone, i.e. X"121. The local pressure
equalization takes place inside a single-bay element, but not between two adjacent
bays due to in-phase wave motion from bay to bay. The sound power is radiated
solely from the #exural near "eld at discontinuities, i.e. locations near spring
support. At the upper bounding frequency of the second propagating zone,
i.e. X"61.8 (or c"0.04), wave motions are antisymmetric about the midspan of
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a single-bay element so less acoustic power is generated due to pressure
equalization.

If the excitation frequency is inside an attenuation zone, the free #exural waves
tend to decay as they move away from the excitation to the next bay. The radiated
acoustic power is generated from the bays close to the excitation. On the other
hand, more bays are involved in vibration and are responsible for acoustic radi-
ation when the wavenumber ratio is inside a propagation zone. Above the coincid-
ence, when the surface motion is so far that the local pressure cannot be equalized,
the excess pressure radiates away from the surface as sound.

The magnitude of the relative sound power at wavenumber ratio c"0.0423 seen
in Figure 2 exceeds that from an unsupported beam by approximately 20 dB. In
order to examine this enhanced radiation, the wavenumber spectrum of the period-
ically spring-supported beam at wavenumber ratio c"0.0423 with M"0,
k
0
¸"0.1, 2¸/l"2/n is displayed in Figure 5.
Nulls at k/k

0
"!1 and k/k

0
"1 in the magnitude of the displacement response

are due to the in"nite acoustic impedance caused by the presence of #uid. The
addition of spring supports results in coherent interference of the re#ection that
causes the displacement #uctuations. The locations of the peaks in the wavenumber
spectrum are associated with the spring support-to-support spacing. The sound
radiation at c"0.0423 results solely from the supersonic wavenumber components
lying between k/k "!1 and k/k "1, the so-called supersonic region. As can
0 0

Figure 5. Normalized wavenumber spectrum at c"0.0423, K
0
¸"0.1, 2¸/l"2/n, M"0.
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be observed from this "gure, there exists an energy concentration zone inside this
region.

In order to present di!erences in the magnitude of sound radiation due to the
addition of spring supports, the normalized displacement response in the
wavenumber spectrum is shown in Figure 6. In this "gure, the wavenumber
spectrum of the periodically supported beam has been divided by that of an
unsupported beam. It clearly shows that the displacement response of the period-
ically supported beam in the supersonic region has been increased by a magnitude
nearly an order over that of an unsupported beam. These enhanced supersonic
components are responsible for the increase in radiated sound power as noted in
Figure 2.

Fixing M at the values of 0, 0.25 and 0.5, the 0.5, the non-dimensional radiated
sound power is plotted in Figure 7 for k

0
¸"0.1, 2¸/l"2/n. Figure 7 shows that

the radiated sound power exhibits #uctuations at certain low wavenumber ratios.
The amplitude of the #uctuation in radiated sound power decreases as the Mach
number increases.

The non-dimensional sound power is plotted in Figure 8 for the ratio 2¸/l"2
and three di!erent Mach numbers, M"0, 0.25 and 0.5. Compared with Figure 2,
Figure 8 shows that there are #uctuations in the radiated sound power even though
2¸/l is an integer. In addition, amplitudes of the #uctuations in the radiated sound
power decrease as the Mach number increases. Locations of the peaks are di!erent
Figure 6. Ratio of wavenumber spectrum at c"0.0423, K
0
¸"0.1, 2¸/l"2/n, M"0.



Figure 7. Relative sound power level versus wavenumber ratio for a range of M values, K
0
¸"0.1,

2¸/l"2/n, in water. ** M"0; .............. M"0.25; } } } } } } } M"0.5.

Figure 8. Relative sound power level versus wavenumber ratio for a range of M values, K
0
¸"0.1,

2¸/l"2, in water. ** M"0; .............. M"0.25; } } } } } } } M"0.5.
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from those of a beam subject to a stationary line force. The exact locations of these
peaks still remain undetermined. It is believed that di!erences in locations of these
peaks may be attributed to the Doppler e!ect due to the moving speed of the
travelling line force.

5. CONCLUSION

The sound radiation from a #uid-loaded beam with periodic spring supports
under the action of moving line forces is formulated and studied. The in#uences of
the spring support spacing and the speed of travelling line force on the acoustic
power are discussed. At lower wavenumber ratios, the addition of the spring
support increases the total structural impedance, which implies less radiated sound
power. The in#uences of the spring supports on the radiated acoustic power
decrease as the wavenumber ratios and travelling speed of the force increases.
When the external line force is stationary and acoustically small, the radiated sound
power is seen to exhibit peaks at certain low wavenumber ratios except that the
length of the external distributed line force is an integral multiple of the support
spacing. It is shown that the wavenumber ratios at which peaks are located nearly
coincide with the lower bounding wavenumber ratios of the odd number of
propagation zones. The incomplete hydrodynamic cancellation is responsible for
the #uctuations in radiated sound power. When the line force is moving at subsonic
speed, the radiated sound power #uctuates more rapidly even though the length of
external distributed line force is an integral multiple of the support spacing.
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APPENDIX: NOMENCLATURE

C
L

longitudinal wave speed
C

0
sound speed in the acoustic medium

EM complex elastic modulus, EM "E(1#jg)
F
0

external force strength per unit width
f (x, t) external moving line force
GM complex shear modulus
h beam height
H(x) heavyside step function
I cross-sectional second moment of area per unit width, I"h3/12
j J!1
k
B

free bending wave number
k
0

acoustic wave number
k
s

sti!ness of the spring support per unit width
¸ line force length
l spacing between two adjacent supports
M Mach number
p(x, y"0, t) acoustic pressure acting on the beam surface
p
1
(x, t) spring supports force

S sti!ness ratio
u(x, t) displacement of the beam
< moving force speed
= dimensionless radiated sound power per unit width
a
0

#uid loading factor
i2 cross-sectional shape factor
c wave number ratio
f dimensionless wavenumber variable
m wavenumber variable
g structural damping
l Poisson ratio
< radiated sound power per unit width
o
0

acoustic medium density
o
v

beam density
u frequency
X non-dimensional frequency
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